# **APPENDIX-II**



# PONDICHERRY UNIVERSITY DEPARTMENT OF MATHEMATICS

# **5-YEAR M.Sc. INTEGRATED PROGRAMMES**

# RAMANUJAN SCHOOL OF MATHEMATICAL SCIENCES & SCHOOL OF PHYSICAL, CHEMICAL & APPLIED SCIENCES

# SYLLABI

# WITH EFFECT FROM THE ACADEMIC YEAR

2011 - 2012

# MATER OF SCIENCE (5 YEAR INTEGRATED) (CBCS)

# Regulations

# **Eligibility for Admission**

Candidates who have passed in +2 with minimum 50% marks and should have studied Mathematics as one of the main subjects. Those who studied only Business Mathematics are not eligible.

# **Medium**

The medium of instruction shall be English

# Integrated M.Sc. Programme of Ramanujan School of Mathematical Sciences From 2011-2012 onwards

| Course   | Name of the Course                 | No. of  | Nature of |
|----------|------------------------------------|---------|-----------|
| Code No. |                                    | Credits | Course    |
| MATH-111 | Differential Calculus              | 3       | Hard Core |
| MATH-121 | Integral Calculus                  | 3       | Hard Core |
| MATH-122 | Analytical Geometry of Three       | 3       | Hard Core |
|          | Dimensions and Trigonometry        |         |           |
| MATH-231 | Multivariable Calculus             | 3       | Hard Core |
| MATH-232 | Elements of Discrete Mathematics   | 3       | Hard Core |
| MATH-241 | Introduction to Real Analysis      | 3       | Hard Core |
| MATH-242 | Abstract Algebra                   | 3       | Hard Core |
| MATH-351 | Elements of Differential Equations | 3       | Hard Core |
| MATH-352 | A First Course in Linear Algebra   | 3       | Hard Core |
| MATH-361 | Fundamentals of Complex Analysis   | 3       | Hard Core |
| MATH-362 | Elements of Mechanics              | 3       | Hard Core |
| MATH-243 | Foundations in Geometry            | 3       | Soft Core |
| MATH-353 | Theory of Equations and Numerical  | 3       | Soft Core |
|          | Methods                            |         |           |

4<sup>th</sup> and 5<sup>th</sup> year Syllabi same as that of M.Sc. Mathematics I & II Year respectively

# Courses offered by the Department of Mathematics for the

# Integrated M.Sc. Program of School of Physical, Chemical and Applied Sciences From 2011-2012 onwards

| Course   | Name of the Course                 | No. of  | Nature of |
|----------|------------------------------------|---------|-----------|
| Code No. |                                    | Credits | Course    |
| MATH-111 | Differential Calculus              | 3       | Hard Core |
| MATH-121 | Integral Calculus                  | 3       | Hard Core |
| MATH-122 | Analytical Geometry of Three       | 3       | Soft Core |
|          | Dimensions and Trigonometry        |         |           |
| MATH-231 | Multivariable Calculus             | 3       | Soft Core |
| MATH-351 | Elements of Differential Equations | 3       | Soft Core |
| MATH-352 | A First Course in Linear Algebra   | 3       | Soft Core |
| MATH-361 | Fundamentals of Complex            | 3       | Soft Core |
|          | Analysis                           |         |           |

# HARD CORE COURSE MATH 111: DIFFERENTIAL CALCULUS 3 Credits

# Unit -I

Derivative of a function, Differentiation rules, Rate of change, Derivatives of trigonometric functions, Chain Rule, Implicit differentiation rational exponents Inverse functions and their derivatives. Hyperbolic function.

# Unit -II

Application of Derivatives

Increasing decreasing functions, Maxima Minima, Error –approximation, optimization, Newton method, mean value theorems, Taylor theorem, and Maclaurians theorem.

#### Unit- III

Asymptotes, test of concavity& convexity point of inflexion, Multiple point Training curves in cartiean & Polar co-ordinates.

#### Unit -IV

Successive differation. Leibritz Rule, Problems and examples.

#### Unit -V

Exponent function a<sup>x</sup>, log—functions, Theorems on Exponent & Log functions. Partial Differentiation, chain rule, Eulers Theorem.

#### **Text Book**

- 1) George B.Thomas, Jr. and Ross L. Finney, Calculus, 9<sup>th</sup> Edition, Pearson Education, **2006**
- 2) E.Kreyzgy, Advanced Engineering Mathematics, Wiley, 8<sup>th</sup> edition, Student edition **1999**
- 3) Serge Larg, A First course in Calculus, 5<sup>th</sup> edition Springer, **1999**

# MATH 121: INTEGRAL CALCULUS 3 Credits

#### Unit -I

Integrals-Indefinite integrals-Standard Forms- Differential Equations - Initial Value Problems - Integration by substitution- Estimating with finite sums.

#### Unit -II

Definite Integrals - Properties of Definite Integrals - Integral as the Limits of a Sum- Evaluation of Integrals- Area and the Mean Value Theorem-The Fundamental Theorem-Substitution in Definite Integrals.

# Unit- III

Integration by Parts (Theorem and Examples) – Integration of Rational Fractions – Irrational Fractions-Trigonometric Substitutions.

# Unit -IV

Reduction Formulae for sin<sup>n</sup>x, cos<sup>n</sup>x, tan<sup>n</sup>x, cot<sup>n</sup>x, sec<sup>n</sup>x, cos<sup>ecn</sup>x, cos<sup>m</sup>xcosnx, cos<sup>m</sup>xsinnx, sin<sup>m</sup>xsinnx, sin<sup>m</sup>xcosnx.

#### Unit -V

Areas between curves- Finding volume by slicing- Volumes of Solids of Revolution - Disk and Washers- Cylindrical Shell-Lengths of Plane Curves- Areas of Surface of Revolution

#### **Text Book**

George B.Thomas, Jr. and Ross L. Finney, Calculus, 9<sup>th</sup> Edition, Pearson Education, **2006** Unit-I: Sections 4.1-4.4; Unit-II: Sections 4.5-4.8; Unit-III: Sections 7.1-7.4; Unit-IV: Sections 7.5; Unit-V: Sections 5.1-5.6.

- 1. N. P. Bali, Integral Calculus, Laxmi Publications, Delhi 1991
- 2. Richard Courant and Fritz John, Introduction to Calculus and Analysis, Volumes I & II Springer, SIE, 2004

# HARD CORE COURSE MATH 122: ANALYTICAL GEOMETRY OF THREE DIMENSIONS AND TRIGONOMETRY 3 Credits

## Unit -I

Preliminaries: Rectangular coordinates- Distance between two points- Division of a line joining two points in a given ratio - Angle between two lines- Direction cosines and ratios of a straight line- Condition for parallelism and perpendicularity of two lines- Projection of a line segment on another line.

The plane- The general equation of the first degree in three variables always represents a plane surface-Direction cosines of the normal to a plane- Equation of a plane in intercept form- The form lx + my + nz = p- Angle between two planes- Pair of planes- Image of a point in a plane-Length of perpendicular from a point to a plane

# Unit- II

The equation to a straight line- Symmetrical form- Parametric coordinates of any point on a line- Transformation from un-symmetrical form to the symmetric form- Condition for a line to be parallel to a plane- Angle between a line and a plane- Coplanar lines Lines intersecting two lines –Skew lines – Shortest distance between two lines

#### Unit- III

The sphere- The equation of a sphere with given centre and radius- The equation of a sphere on the line joining two given points as diameter- Plane section of a sphere- Equation of a sphere passing through a given circle- The intersection of two spheres- The equation of a tangent plane to a sphere- Length of tangent to a sphere- Orthogonal spheres.

#### Unit- IV

De Moivre's theorem- Expansions of  $\cos n\theta$ ,  $\sin n\theta$  and  $\tan n\theta$  - Powers of sines and cosines of  $\theta$  in terms of functions of multiples of  $\theta$ . Expansions of  $\sin \theta$ ,  $\cos \theta$  in a series of ascending powers of  $\theta$  – Limits and approximations.

#### Unit -V

Hyperbolic functions- Inverse hyperbolic functions- Separation into real and imaginary parts.

#### **Text Books:**

- 1. T.K.Manickavachagom Pillai and T.Natarajan, A Text Book of Analytical Geometry (Part-II Three dimensions), S. Viswanathan Printers & Publishers), **2008**
- 2. S. Narayanan, Trigonometry, S. Viswanathan Publishers, 1995

- 1. S.L. Loney, The Elements of Coordinate Geometry, Macmillan India, 2010
- 2. R.J.T.Bill, Elementary Treatise on Coordinate Geometry of Three Dimensions, Macmillan India, **1918**
- 3 T.K.Manickavachagom Pillai, Analytical Geometry, S. Viswanathan Publishers, 1996

# Semester – III HARD CORE COURSE MATH 231: MULTIVARIABLE CALCULUS 3 Credits

#### **Unit I: Differentiation**

Graphs and Level curves – Limits and Continuity – Partial Derivatives – Differentiability – The Chain Rule – Gradients and Directional Derivatives.

#### Unit II: Higher Derivatives and Extrema

Higher order partial derivatives – Taylor's theorem – Maxima and Minima – Second derivative test – Constrained Extrema and Lagrange Multipliers.

#### **Unit III: Multiple Integral**

Double Integrals – Triple Integrals – Change of variables – Cylindrical and Spherical coordinates.

#### Unit IV: Integrals over Curves and Surfaces

Line integrals – Parametrized surfaces – Area of a surface – Surface integral.

#### Unit V: The Integral Theorems of Vector Analysis

Green's Theorem - Stokes's Theorem - Gauss Divergence Theorem.

#### **Text Book**

J.E. Marsden, A.J. Tromba and A. Weinstein, Basic Multivariable Calculus, Springer, **2009**, (Indian Edition). Unit-I: Sections 2.1-2.5; Unit-II: Sections 3.1-3.5; Unit-III: Sections 5.2-5.5; Unit-IV: Sections 6.1-6.4; Unit-V: Sections 7.1-7.3.

- 1. George B.Thomas, Jr. and Ross L. Finney, Calculus, 9<sup>th</sup> Edition, Pearson Education, 2006
- 2. Richard Courant and Fritz John, Introduction to Calculus and Analysis, Volumes I & II, Springer, SIE, **2004.**

# HARD CORE COURSE MATH-232: ELEMENTS OF DISCRETE MATHEMTICS

**Unit** – **I** Preliminaries:

Relations, Functions, Integers Division algorithm, Euclidean Algorithm, Prim numbers, congruence, Application of congruence.

**Unit-II** Introduction and recursion:

Mathematical induction, Recursively defined sequence, solving recurrence relations, Characteristic polynomials, Generating functions.

**Unit-III** Principals of counting: Inclusion, Addition and multiplication rule, Pigeon hole Principle.

**Unit-IV** Permutation and combination:

Permutation, combination, Repetition, Derangements, Binomial Theorem.

**Unit-V** Algorithm:

Complexity, Searching and sorting, Enumeration of permutation and combination.

#### Text Book:

Discrete mathematics with Graph Theory, Second edition, Edgar G. Goodaire and Michael M.Parmenter, Published by Pearson Education (SingaporeP Ptd) Ltd

- 1. Richard Johnsonbauth, Discrete Mathematics 5<sup>th</sup> Edition,–, Pearson Education Asia, New Delhi, **2002**
- 2. Ralph. R. Grimaldi Discrete and Combinatorial Mathematics: An applied Introduction 4<sup>th</sup> Edition, Pearson Education Asia, Delhi, **2002**
- 3. C.L. Lie, Elements of Discrete Mathematics the Mc Graw-Hill, Inc. India 1985
- 4. Bernard Kolman, Robert C. Busby, Sharan Cutler Ross, Discrete Mathematical Structure, 4<sup>th</sup> Edition print Pearson Education Pvt. Ltd., New Delhi **2003**

# MATH-241: INTRODUCTION TO REAL ANALYSIS Hard Core

#### UNIT-I

Definition of sequence and subsequence-Limit of a sequence - Convergent sequence -Boundedence - Monotone sequence - Operation on convergent sequence - Limit superior and limit inferior - Cauchy sequence.

#### UNIT - II

Convergence and Divergence - Series with non-negative terms -- Alternating series -Conditional convergence and absolute convergence. Test of absolute convergence -Series whose terms form a non-increasing sequence - Summation by Parts.

#### UNIT -III

Limit of a function on the real line -Metric Spaces – Functions continuous at a point. On the real line – Re formulation – Functions. Continuous on a metric space.

#### UNIT -IV

Functions continuous at a point on the real line - Reformulation - Functions continuous on a metric space - Open sets and closed sets - More about open sets - Connected sets.

#### UNIT –V

Open Sets – closed Sets – Discontinuous functions on R' – More about open sets – connected sets – Bounded sets – complete metric spaces.

#### **Text Book**

Richard R Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co. Pvt Ltd, New Delhi, Indian Edition **1970** 

UNit 1: Sec 2.1 - 2.10 Unit 2. Sec 3.1 - 3.8 Unit 3. Sce 4.1 - 4.3, 5.1 - 5.3 Unit 4. Sec 5.4 - 5.6, 6.1, 6.2, 6.3 (Bounded Set only), 6.4. Unit 5. Sec 7.5 - 7.7, 8.1 - 8.7

## HARD CORE COURSE MATH 242: ABSTRACT ALGEBRA 3 Credits

#### Unit- I

Definition of a group-Some examples of Groups- Some Preliminary Lemmas -Subgroups

#### Unit- II

A Counting Principle- Normal Subgroups and Quotient Groups- Homomorphism

#### Unit -III

Automorphism – Cayley's Theorem-Permutation Groups

#### Unit -IV

Definition and Examples of a Rings- Some Special Classes of Rings - Homomorphism-Ideals and Quotients Rings-More Ideals and Quotients Rings

#### Unit -V

The Field of Quotients of an Integral Domain-Euclidean Rings- A Particular Euclidean Ring

#### **Text Book**

I.N. Herstein, Topics in Algebra, 2<sup>nd</sup> Edition, John Wiley & Sons, 2003. Unit-I: Sections 2.1-2.4; Unit-II: Sections 2.5-2.7; Unit-III: Sections 2.8-2.10; Unit-IV: Sections 3.1-3.5; Unit-V: Sections 3.6-3.8

#### **Reference Book**

I Neal H. Mc Coy and Gerald J. Janusz, Introduction to Abstract Algebra, Elsevier, 6<sup>th</sup> Edition, **2005** 

# 5 Year Integrated M.Sc. Program HARD CORE COURSE MATH 351: ELEMENTS OF DIFFERENTIAL EQUATIONS 3 Credits

#### Unit - I

Exact Differential Equations. Integrating Factors – Linear Differential Equations. Bernoulli Equation – Modeling : Electric Circuits – Orthogonal Trajectories of Curves.

#### Unit -II

Homogeneous Linear Equations of Second Order – Second–order homogeneous Equations with Constant Coefficients – Case of Complex Roots. Complex Exponential Function – Differential Operators – Modeling : Free Oscillations – Euler-Cauchy Equation – Existence and uniqueness Theory – Wronskian

# Unit -III

Non homogeneous Equations – Solution by Undetermined Coefficients – Solution by Variation of Parameters – Modeling of Electric Circuits – Higher Order Linear Differential Equations – Higher Order Homogeneous Equations with Constant Coefficients.

# Unit - IV

Introduction: Vectors, Matrices, Eigenvalues – Introductory Examples – Basic Concepts and Theory – Homogeneous Systems with Constant Coefficients, Phase Plane, Critical Points – Criteria for Critical Points, Stability

# Unit- V

Laplace Transform. Inverse Transform, Linearity. Shifting – Transforms of Derivatives and Integrals. Differential Equations – Unit Step Function, Second Shifting Theorem. Dirac's Delta Function – Convolution. Integral Equations – Partial Fractions. Differential Equations – Systems of Differential Equations

# **Text Book**

Erwin Kreyszig, Advanced Engineering Mathematics, 8<sup>th</sup> Edition, John Wiley & Sons, Reprinted in, **2010** 

Unit-I: Sections 1.5-1.8; Unit-II: Sections 2.1-2.7; Unit-III: Sections 2.8-2.10, 2.13, 2.14; Unit-IV: Sections 3.0-3.4; Unit-V: Sections 5.1-5.7

- 1. D George F. Simmons, Differential Equations, Tata McGraw-Hill, New Delhi, 1972
- 2. Boyce and Di Prima, Differential Equations and Boundary Value Problems, Wiley, 8<sup>th</sup> Edition, April, **2004**, ISBN-10-0471433381
- **3.** Earl A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall of India Private Ltd, **1991**

#### MATH: 352 (Hard Core) - A FIRST COURSE IN LINEAR ALGEBRA

#### UNIT – I

Abstract Algebra Concepts – Groups, Subgroups, Fields, examples

Vector space, Subspace, linear combinations and systems of linear equations, Linear dependence and linear independence, Basis and dimension

#### UNIT – II

Linear Transformations, Null spaces, Range spaces, Dimension theorem, Matrix representation of linear transformation, composition of linear transformations and Matrix multiplication, Invertability and Isomorphism, The change of coordinate matrix

#### Unit – III

Elementary matrix Operations and elementary matrices, The rank of a matrix and matrix inverses, systems of linear equations, theory and computation

#### UNIT – IV

Determinants of order 2 and order n, propertie4s of determinants, Important facts about determinants, Eigen values and Eigen vectors, Diagonalizability, Invariant spaces and Cayley- Hamilton theorem.

#### UNIT – V

Inner products and norms, The Gram-Schmidt orthogonalisation process and orthogonal complements, The ad joint of a linear operator, Normal and self-ad joint operators, Unitary and orthogonal operators and their matrices, Orthogonal and their projections, spectral theorems.

#### TEXT BOOK:

- 1) Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence, Linear Algebra, 4<sup>TH</sup> Edition, Printice Hall of India Pvt. Ltd., **2006**
- 2) I. N. Herstin, Topics in Algebra, 2<sup>nd</sup> Edition, John Wiley & Sons, 2003

#### **Reference Book:**

S. Kumaresan, Linear Algebra Geometric Approach, Prentice Hall of India PVT. LTD, 2000

# HARD CORE COURSE MATH 361: FUNDAMENTALS OF COMPLEX ANALYSIS 3 Credits

# Unit - I

Complex Numbers. Complex Plane - Polar Form of Complex Numbers. Powers and Roots - Derivative. Analytic Function - Cauchy-Riemann Equations. Laplace's Equation - Geometry of Analytic Functions: Conformal Mapping

# Unit -II

Exponential Function - Trigonometric Functions, Hyperbolic Functions - Logarithm. General Power - Linear Fractional Transformation

# Unit- III

Line Integral in the Complex Plane - Cauchy's Integral Theorem - Cauchy's Integral Formula - Derivatives of Analytic Functions

# Unit - IV

Sequences, Series, Convergence Tests - Power Series - Functions Given by Power Series - Taylor Series and Maclaurin Series

# Unit -V

Laurent Series - Singularities and Zeros, Infinity - Residue Integration Method Evaluation of Real Integrals

# Text Book

Erwin Kreyszig, Advanced Engineering Mathematics, 8<sup>th</sup> Edition, John Wiley & Sons Unit-I: Sections 12.1-12.5; Unit-II: Sections 12.6-12.9; Unit-III: Sections 13.1-13.4; Unit-IV: Sections 14.1-14.4; Unit-V: Sections 15.1-15.4

- 1. L. Ahlfors, Complex Analysis, McGraw-Hill International Edition, 1979
- 2. R.V. Churchil, Complex Variables and Applications, 4<sup>th</sup> Edition, McGraw Hill Book Company, Inc **1948**
- 3. John B. Conway, Functions of One Complex Variable, Springer, ISE, 1973

# HARD CORE COURSE MATH 362: ELEMENTS OF MECHANICS

# Unit -I

Newtonian Mechanics in Moving Coordinate Systems: Newton's Equation in a Rotating Coordinate System- Free Fall on the Rotating Earth-Foucault's Pendulum

# Unit -II

Mechanics of Particle Systems: Degrees of Freedom- Center of gravity (Scattering theory excluded)

# Unit -III

Mechanical Fundamental quantities of Systems of Mass Points-Linear and angular momentum-Energy law- Transformation to center of mass coordinates- Transformation of the kinetic energy-Vibrations of Coupled Mass Points- The vibrating chain- The Vibrating String-Solution of the wave equation- Normal vibration

# Unit -IV

Mechanics of Rigid Bodies: Rotation About a Fixed Axis-Moment of inertia-The physical pendulum-Rotation About a Point-Tensor of inertia- Kinetic energy of a rotating rigid body-The principal axes of inertia-Existence and orthogonality of the principal axes-Transformation of the tensor of inertia-Tensor of inertia in the system of principal axes-Ellipsoid of inertia

# Unit- V

Theory of the Top: Free top-Geometrical and analytical theory-The heavy symmetric top and application-The Euler angles-Motion of the heavy symmetric top

#### **Text Book**

Walter Greiner, Classical Mechanics: Systems of Particles and Hamiltonian Dynamics, Springer, ISE, (**2004**) Unit I: Sections 1-3; Unit II: Sections 4-5; Unit III: Sections 6-8; Unit IV: Sections 11-12; Unit V: Section 13

enit V. Seedon 15

- 1. H. Goldstein, Classical Mechanics, Narosa Publishing House, New Delhi, 1985
- 2. K. Sankara Rao. Classical Mechanics, Prentice-Hall of India Private Ltd, New Delhi, 2005
- 3. S.L. Loney, Dynamics of a Particle and of Rigid Bodies, Cambridge University Press, 1927

# Soft Core MATH 243: FOUNDATIONS IN GEOMETRY

#### Unit -I

Curves – Arc – length, Reparametrization – Level curves – Curvature – Plane curves – Space curves – Torsion – Serret – Frenet equations.

# Unit-II

Length of cuve – Area contained in a simple closed curve. The Isoperimetric inequality – Four vertex theorem.

#### Surfaces

# Unit-III

Definition and basic properties – Smooth surfaces – reparametrization – Level surfaces – tangent, Normal and orientability – Examples of smooth surfaces like ruled surfaces, surfaces or revolution – Quadric surfaces – Triply orthogonal systems.

#### Unit-IV

Lengths of curves on surfaces – first fundamental form – Isomerties of surfaces – Characterization of isometrics in terms of first fundamental form – Conformal mappings of surfaces – Characterization of conformal mappings in terms of first fundamental form – Stereographic projection.

#### Unit-V

Surface area – Second fundamental form – Curvature of curves on a surface – Meusnier theorem – Principal curvatures – Umplics – Euler's theorem.

#### Text Book:

 Andrew Pressley, Elementary Differential Geometry, Springer International Edition, Springer India Private Ltd., 2001. Indian Reprint, 2004 (Relevant sections from Chapters 1 to 6)

#### **Reference Book:**

W. Klingenberg, A course in Differential Geometry, Springer, Springer-Verlag, New York, 1978

# SOFT CORE COURSE MATH 353: THEORY OF EQUATIONS AND NUMERICAL METHODS 3 Credits

#### Unit- I

Relations between roots and coefficients of an algebraic equation - Imaginary roots-Irrational roots-Symmetric functions of the roots in terms of the coefficients

# Unit- II

Reciprocal equations- Descartes' rule of signs - Transformations of equations

# Unit- III

Numerical solutions of algebraic equations – Bisection method – Regula falsi method – Iteration method – Newton –Raphson method

# Unit- IV

System of linear equations – Gauss elimination method – Jordan method – Jacobi's method – Gauss-Seidel method

# Unit -V

Finite difference operators – Newton's forward difference formula – Newton's backward difference formula – Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's 1/3 rule.

#### **Text Book:**

- 1. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice-Hall of India Private Ltd, New Delhi.3<sup>rd</sup> Edition, **2000**
- 2. Chadrika Prasad, Text Book on Algebra and Theory of Equations, Pothiskola Private Ltd., Allahabad 2001

#### **Reference Books:**

1. H.S. Hall and S.R. Knight, Higher Algebra, H.M. Publications, 1994