SEMESTER I - ALLIED MATHEMATICS –I (FOR PHYSICS/CHEMISTRY/ELECTRONICS MAIN)

(4 Credits)

UNIT -1 (ALGEBRA)

Matrices – Rank of a matrices – Consistency of a system of linear non-homogeneous equations(statement only) – Simple problems – Characteristic roots of a square matrix – Evaluation of Eigen values and Eigen vectors of a square matrix – Cayley Hamilton theorem (statement only) – Simple problems.

UNIT -2 (TRIGNOMETRY)

De Moivre's theorem – Expansions of $Cos(n\theta)$, $Sin(n\theta)$ and $tan(n\theta)$ – Powers of sines and cosines of θ in terms of functions of multiples of θ . Expansions of $sin(\theta)$, $cos(\theta)$ in a series of ascending powers of θ – Limits and approximations.

UNIT-3 (FUNCTIONS OF COMPLEX VARIABLE)

Analytic functions – Cauchy Riemann equations – derivation and simple problems – Harmonic functions

UNIT-4 (VECTOR CALCULUS)

 $\label{thm:continuous} Vector\ differentiations-Scalar\ point\ functions-Vector\ point\ functions-Derivatives\ of\ a$ $\ Vector\ point\ functions\ ,\ sum\ of\ two\ vector\ point\ functions\ ,\ product\ of\ scalar\ and\ Vector\ point\ function,\ Vector\ product-The\ vector\ operator\ Del,\ Gradient\ ,\ Divergence\ and\ Curl-Simple\ application\ problems\ involving\ Cartesians-Laplace\ Operator.$

UNIT - 5 (POLAR CO-ORDINATES)

Angle between radius and vector and tangent – Angle of intersection of two curves – Pedal equations of a curve

Text books:

- 1. S. Narayanan and T.K. Manicavachagom pillai, Calculus, S. Viswanathan Publishers
- 2. S. Narayan, Trignometry, S. Viswanathan Publishers, 2012
- 3. P. Durai Pandian, Complex Variable, Emerald Publishers, 1979
- 4. P. Durai Pandian, Vector Calculus, 1984
- 5. Vittal and Malini, Allied Mathematics, V.Margham Publishers, 1997

Reference Books:

- George B.Thomas, Maurice D.Weir and Joel Hass, Thomas' Calculus 12th Edition, Pearson Education, 2015
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2011
- 3. Gilbert Strang, Linear Algebra and Its Applications, CENGAGE Learning, 2007.

SEMESTER II - ALLIED MATHEMATICS –II (FOR PHYSICS/CHEMISTRY/ELECTRONICS MAIN) (4 Credits)

UNIT -1 (INTEGRAL CALCULUS)

Evaluation of $\int e^{ax} \cos(bx) dx$ and $\int e^{ax} \sin(bx) dx$, - Bernoulli's formula for integration by parts – Definite integrals – reduction formulae – Related definite integrals – properties – reduction formula for $\int e^{ax} x^n dx$, $\int \sin^n x dx$ and $\int \cos^n x dx$ (n is a positive integer) - Evaluation

of
$$\int_{0}^{\infty} e^{x} x^{n} dx$$
, $\int_{0}^{\pi/2} \sin^{n} x dx$, $\int_{0}^{\pi/2} c \cos^{n} x dx$, - Rule of writing down

$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx$$
 and illustrations

UNIT -2 (VECTOR INTEGRATION)

Gauss Divergence theorem and Stokes's theorem (Statement only) - Simple problems

UNIT-3 (FOURIER SERIES)

Definition – Finding Fourier co-efficient for a given period function with period 2π - Odd and Even functions – Half range series

UNIT-4 (ORDINAR DIFFERENTIAL EQUATIONS)

Equations of the first order but not of the first degree – Equations solvable for dy/dx, – equations solvable for y - Equations Solvable for x - Clairaut's form (simple cases) – Linear equations with constant coefficients – Evaluation of the particular integral of the equation – e^x , sin(ax), Cos(ax), x^k , $e^{ax}f(x)$

UNIT - 5 (LAPLACE TRANSFORM)

Definitions – Condition for the existence of Laplace transform – Laplace transform of 1, e^{at} , e^{-at} , $\cos(at)$, $\sin(at)$, $\sinh(at)$, $\cosh(at)$ and t^n – Simple problems – Laplace transform of the derivatives – Laplace transform of the integral – first shifting theorem – change of scale of property – Laplace transform of function multiplied by t, divisible by t – inverse Laplace transform – solution of ordinary differential equations using Laplace transforms

Text books:

- 1. S. Narayanan and T.K. Manicavachagom pillai, Calculus, S. Viswanathan Publishers
- 2. P. Durai Pandian, Vector Calculus, 1984
- 3. Vittal and Malini, Allied Mathematics, V.Margham Publishers, 1997

Reference Books:

- George B.Thomas, Maurice D.Weir and Joel Hass, Thomas' Calculus 12th Edition, Pearson Education, 2015
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2011