## PONDICHERRY UNIVERSITY

(A CENTRAL UNIVERSITY)


## B.Sc. MATHEMATICS (CBCS)

REGULATIONS \& SYLLABUS<br>2017-2018 ONWARDS

## Eligibility Criteria for Admission to B.Sc Mathematics

1. A pass in Higher secondary with Mathematics (not Business Mathematics) as one of the subjects of study.
2. For the definitions of Keywords, Grading and Computation of SGPA and CGPA, refer guidelines for choice based credit system of UG Programmes in Arts, Science and Commerce, issued by Pondicherry University from the academic year 2017-18.

## SCHEME FORCHOICE BASED CREDIT SYSTEM

IN
B.Sc. MATHEMATICS PROGRAMME
(To be implemented from 2017-18 onwards)

| COURSE | SUBJECT CODE | TITLE OF THE PAPER | CREDITS |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lecture | Tut/Prac |
| SEMESTER-I 20 Credits |  |  |  |  |
| MIL - 1 | LBEN/LHIN/LMAL/LSAN/ | Bengali/Hindi/Malayalam/Sanskrit/ | 03 |  |
| ENGLISH - | ENGL 112 | English - I | 03 |  |
| DSC - 1A | MATH 111 | Theory of Equations and Trigonometry | 04 | 02 |
| DSC-2A | MATH 112 | Differential Calculus | 04 | 02 |
| AECC - 1 | PADM 113 | Public Administration | 02 |  |
| SEMESTER-II20 Credits |  |  |  |  |
| MIL-2 | LBEN/LHIN/LMAL/LSAN/ | Bengali/Hindi/Malayalam/Sanskrit/ | 03 |  |
| ENGLISH - | ENGL 122 | English - II | 03 |  |
| DSC-1B | MATH 121 | Analytical Geometry - 3D | 04 | 02 |
| DSC - 2B | MATH 122 | Integral Calculus | 04 | 02 |
| AECC - 2 | ENVS 123 | Environmental Studies | 02 |  |
| SEMESTER-III20 Credits |  |  |  |  |
| DSC-1C | MATH (231) | Abstract Algebra | 04 | 02 |
| DSC-2C | MATH (232) | Real Analysis - I | 04 | 02 |
| DSC - 3C | MATH (233) | Statics | 04 | 02 |
| SEC - 1 | MATH (234) | Vector Calculus | 02 |  |
| SEMESTER-IV 20 Credits |  |  |  |  |
| DSC - 1D | MATH (241) | Linear Algebra | 04 | 02 |
| DSC-2D | MATH (242) | Real Analysis - II | 04 | 02 |
| DSC - 3D | MATH (243) | Dynamics | 04 | 02 |
| SEC-2 | MATH (244) | Logic and Lattices | 02 |  |
| SEMESTER-V20 Credits |  |  |  |  |
| SEC - 3 | MATH (351) | Programming Lab in C - Practical |  | 02 |
| $\begin{aligned} & \text { *DSE }-1 \mathrm{~A} \\ & \text { *DSE }-2 \mathrm{~A} \\ & \text { *DSE }-3 \mathrm{~A} \end{aligned}$ | MATH (352) | Complex Analysis - I | 04 | 01 |
|  | MATH (353) | Operation Research - I | 04 | 01 |
|  | MATH (354) | Ordinary Differential Equations and Laplace Transforms | 04 | 01 |
|  | MATH (355) | Graph Theory | 04 | 01 |
|  | MATH (356) | Mathematical Statistics - I | 04 | 01 |
| GE-1 | MATH (357) | Programming in C | 03 |  |
| SEMESTER-VI20 Credits |  |  |  |  |
| SEC-4 | MATH (361) | Programming Lab in Numerical methods using C Practical |  | 02 |
| $\begin{aligned} & \text { *DSE }-1 \mathrm{~B} \\ & \text { *DSE }-2 \mathrm{~B} \\ & \text { *DSE }-3 \mathrm{~B} \end{aligned}$ | MATH (362) | Complex Analysis -II | 04 | 01 |
|  | MATH (363) | Operation Research - II | 04 | 01 |
|  | MATH (364) | Partial Differential Equations | 04 | 01 |
|  | MATH (365) | Fourier Series and Fourier Transform | 04 | 01 |
|  | MATH (366) | Mathematical Statistics - II | 04 | 01 |
| GE-2 | MATH (367) | Numerical Methods using C | 03 |  |

## LIST OF DISCIPLINE SPECIFIC CORE COURSES

(THEORY: 4 CREDITS AND TUTORIAL: 2 CREDITS)
10 * $6=60$ Credits

| COURSE NAME | PAPER CODE | TITLE OF THE PAPER |
| :--- | :--- | :--- |
| DSC - 1A | MATH 111 | Theory of equations and <br> Trigonometry |
| DSC - 2A | MATH 112 | Differential Calculus |
| DSC - 1B | MATH 121 | Analytical Geometry of 3D |
| DSC - 2B | MATH 122 231 | Integral Calculus |
| DSC - 1C | MATH 232 | Abstract Algebra |
| DSC - 2C | MATH 241 | Real Analysis -1 |
| DSC - 3C | MATH 242 | Linear Algebra |
| DSC - 1D | MATH 243 | Real Analysis -II |
| DSC - 2D | Dynamics |  |
| DSC - 3D |  |  |

LIST OF SKILL-ENHANCEMENT ELECTIVE COURSES (SEC)
(2 CREDITS FOR EACH PAPER)4* 2=8 credits

| COURSE NAME | PAPER CODE | TITLE OF THE PAPER |
| :--- | :--- | :--- |
| SEC-1 | MATH 234 | Vector Calculus |
| SEC-2 | MATH 244 | Logic and Lattices |
| SEC-3 | MATH 351 | Programming Lab in C - <br> Practical |
| SEC-4 | Programming Lab in <br> Numerical methods using C <br> - Practical |  |

## LIST OF DISCIPLINE SPECIFIC ELECTIVES (DSE)

(THEORY: 4 CREDITS AND TUTORIAL: 1 CREDIT) 6 * 5 = 30 Credits

| COURSE NAME | PAPER CODE | TITLE OF THE PAPER |
| :--- | :--- | :--- |
| DISCIPLINE - <br> A $^{*}$ | MATH 352 | Complex Analysis - I |
|  | MATH 353 | Operations Research - I |
|  | MATH 354 | Ordinary Differential Equations and <br> Laplace Transform |
|  | MATH 355 | Graph Theory |
|  | MATH 356 | Mathematical Statistics - I |
| DISCIPLINE - <br> B | MATH 362 | Complex Analysis - II |
|  | MATH 363 | Operations Research - II |
| DSE - 1B <br> DSE - 2B | MATH 364 | Partial Differential Equations |
|  | MATH 365 | Fourier series and Fourier Transform |
|  | MATH 366 | Mathematical Statistics - II |

*Select 3 courses from each of the DISCIPLINE - A and DISCIPLINE -B

## LIST OF GENERIC ELECTIVE (GE)

(THEORY: 3 CREDITS) $2 * 3=6$ Credits

| COURSE NAME | PAPER CODE | TITLE OF THE PAPER |
| :--- | :--- | :--- |
| GE - 1 | MATH 357 | Programming in C |
| GE -2 | MATH 367 | Numerical Methods using C |

## CHOICE BASED CREDIT SYSTEM IN

 B.Sc. MATHEMATICS PROGRAMMETo be implemented form 2017-18 onwards

## Distribution of Workload (one credit hour is equivalent 1.5 hours)

| SEMESTER | SUBJECT Code | TITLE OF THE PAPER | CREDITS |  | CONTACT HOURS / WEEK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | THEORY | TUT | THEORY | TUT |
| $\begin{aligned} & \text { I } 20 \text { Credits }) \end{aligned}$ | LBEN/LHIN/ LMAL/LSAN/ LTAM/LTEL 111 | Bengali/Hindi/ <br> Malayalam/ <br> Sanskrit/Tamil/ <br> Telugu | 03 | - | 5 | 0 |
|  | ENGL 112 | ENGLISH - I | 03 |  | 5 | 0 |
|  | MATH 111 | Theory of Equation and Trigonometry | 04 | 02 | 6 | 3 |
|  | MATH 112 | Differential Calculus | 04 | 02 | 6 | 3 |
|  | PADM 113 | Public Administration | 02 | - | 2 | 0 |
| II <br> ( 20 Credits) | LBEN/LHIN/ LMAL/LSAN/ LTAM/LTEL 121 | Bengali/Hindi/ Malayalam/Sanskrit/ Tamil/Telugu | 03 | - | 5 | 0 |
|  | ENGL 122 | ENGLISH - II | 03 | - | 5 | 0 |
|  | MATH 121 | Analytical Geometry of 3D | 04 | 02 | 6 | 3 |
|  | MATH 122 | Integral calculus | 04 | 02 | 6 | 3 |
|  | ENVS 123 | Environmental Studies | 02 | - | 2 | 0 |


| SEMESTER | SUBJECT CODE | $\underset{\text { PAPER }}{\text { TITLE OF THE }}$ | CREDITS |  | CONTACTHOURS / WEEK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | THEORY | TUT | THEORY | TUT |
| $\begin{gathered} \text { III } \\ (20 \text { Credits) } \end{gathered}$ | MATH (231) | Abstract Algebra | 04 | 02 | 6 | 3 |
|  | MATH (232) | Real Analysis I | 04 | 02 | 6 | 3 |
|  | MATH (233) | Statics | 04 | 02 | 6 | 3 |
|  | MATH (234) | Vector Calculus | 02 | - | 3 | 0 |
| $\begin{gathered} \text { IV } \\ (20 \text { Credits) } \end{gathered}$ | MATH (241) | Linear Algebra | 04 | 02 | 6 | 3 |
|  | MATH (242) | Real Analysis II | 04 | 02 | 6 | 3 |
|  | MATH (243) | Dynamics | 04 | 02 | 6 | 3 |
|  | MATH (244) | Logic and Lattices | 02 | - | 3 | 0 |


| SEMESTER | $\begin{aligned} & \text { SUBJECT } \\ & \text { CODE } \end{aligned}$ | TITLE OF THE PAPER | CREDITS |  | CONTACT <br> HOURS / WEEK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | THEORY | TUT/PRAC | THEORY | TUT/PRAC |
| $\begin{aligned} & \text { V } \\ & (20 \text { Credits) } \end{aligned}$ | MATH (351) | Programming Lab in C - Practical | -- | 02 | 0 | 4 |
|  | MATH (352) | Complex analysis - I | 04 | 01 | 6 | 1 |
| Select any three <br> from <br> MATH- 352 <br> to $\text { MATH - } 356$ | MATH (353) | Operations Research - I | 04 | 01 | 6 | 1 |
|  | MATH (354) | Ordinary differential Equations | 04 | 01 | 6 | 1 |
|  | MATH (355) | Fourier Series and Fourier Transform | 04 | 01 | 6 | 1 |
|  | MATH (356) | Mathematical Statistics-I | 04 | 01 | 6 | 1 |
|  | MATH (357) | Programming in C | 03 | -- | 5 | 0 |


| SEMESTER | $\begin{aligned} & \text { SUBJECT } \\ & \text { CODE } \end{aligned}$ | TITLE OF THE PAPER | CREDITS |  | CONTACTHOURS / WEEK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { THEOR } \\ & \mathrm{Y} \end{aligned}$ | TUT/PRAC | THEORY | $\begin{aligned} & \text { TUT/PR } \\ & \text { AC } \end{aligned}$ |
| VI <br> ( 20 Credits) | MATH (361) | Programming Lab in Numerical Methods using C - Practical | -- | 02 | 0 | 4 |
|  | MATH (362) | Complex analysis - II | 04 | 01 | 6 | 1 |
| Select any <br> three <br> from <br> MATH- 362 <br> to <br> MATH - 366 | MATH (363) | Operations Research - II | 04 | 01 | 6 | 1 |
|  | MATH (364) | Partial Differential Equations | 04 | 01 | 6 | 1 |
|  | MATH (365) | Graph Theory | 04 | 01 | 6 | 1 |
|  | MATH (366) | Mathematical Statistics-II | 04 | 01 | 6 | 1 |
|  | MATH (367) | Numerical Methods using C | 03 | 0 | 5 | 0 |

# DETAILS OF SYLLABUS 

For<br>B.Sc. MATHEMATICS PROGRAMME<br>Under<br>CHOICE BASED CREDIT SYSTEM

Offered in affiliated Colleges of Pondicherry University from the academic year

2017-18 onwards

| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | I | Course Name | DSC - 1A | Credits | Theory | 4 |
| Semester | I | Course Code | MATH 111 |  | Tutorial | 2 |
| Paper Name | THEORY OF EQUATIONS AND TRIGONOMETRY |  |  |  |  |  |
| UNIT I | Relations between the roots and the coefficients of a general polynomial equations in one variable - Transformation of equations - Descarte's rule of signs. |  |  |  |  |  |
| UNIT II | Solution of cubic equations :Cardon's Method - Trigonometrical method - Horner's Method, Bi-quadratic equation - Ferrari method. |  |  |  |  |  |
| UNIT III | De Moivre's theorem and its applications - Direct and Inverse circular and hyperbolic functions. |  |  |  |  |  |
| UNIT IV | Logarithm of a complex quantity- Expansion of Trigonometrical functions. |  |  |  |  |  |
| UNIT V | Gregory's series- Summation of series. |  |  |  |  |  |
| Prescribed Text(specify sections clearly) | 1. Algebra Volume-1, T.K. Manicavachagom Pillay, T.Natarajan and K.S. Ganapathy,. Viswanathan (Printers \& Publishers) Pvt. Lid, (1999) <br> 2. Trigonometry, S. Narayanan and T.K. Manicavachagom Pillai, S. Viswanathan (Printers \& Publishers) Pvt. Ltd, (1997) |  |  |  |  |  |
| Recommended books | Trigonometry, P.R. Vittal and Malini, Algebra and Margham Publications (2008) |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMA | ICS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | I | Course Name | DSC -2A | Credits | Theory | 4 |
| Semester | I | Course Code | MATH 112 |  | Tutorial | 2 |
| Paper Name <br> UNIT I | $\mathbf{n}^{\text {th }}$ derivative - Standard results - Trigonometrical transformation - Formation of equations involving derivatives - Leibnitz formula. |  |  |  |  |  |
| UNIT II | Total differential coefficients - Euler's theorem - Partial derivatives of a function of two functions -Equations of tangent and normal - Taylor expansions of single and double variables. |  |  |  |  |  |
| UNIT III | Maxima and Minima of two variables - Lagrange's method of undetermined multipliers - Angle of intersection of curves - Sub tangent and Sub Normal. - |  |  |  |  |  |
| UNIT IV | Angle between the radius vector and tangent - Angle between the intersection of two curves - Polar sub tangent and sub normal. |  |  |  |  |  |
| UNIT V | Circle, radius and centre of curvature - Cartesian formula for radius of curvature - envelope. |  |  |  |  |  |
| Prescribed Text(specify sections clearly) | Calculus Volume - I, T. K. Manickavachagom Pillai, Printers and Publishers (May1992 Edition) <br> Unit 1 : Chapter 3 <br> Unit 2: Chapter 8 <br> Unit 3 : Chapter 8, 9 <br> Unit 4 : Chapter 9 <br> Unit 5 : Chapter 10 (Section 1) |  |  |  |  |  |
| Recommended books | Calculus by Shanti Narayanan |  |  |  |  |  |
| $e$-Learning Source | http://ndl.iitkgp.ac.in http://ocw.mit.edu http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | I | Course Name | DSC - 1B |  | Theory | 4 |
| Semester | II | Course Code | MATH 121 |  | Tutorial | 2 |
| Paper <br> Name | ANALYTICAL GEOMETRY - 3D |  |  |  |  |  |
| UNIT I | Angle between 2 lines-projections-direction cosines-relation betweenthe direction cosines of a straight line-the projection of the line joining $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ on any line with d.c.'sl,m,n.-direction cosines of any line joining 2 points-angle between the lines whose direction cosines are ( $l_{1}, m_{1}, n_{1}$ ) and $\left(\mathbf{l}_{2}, \mathbf{m}_{2}, \mathbf{n}_{2}\right)$. |  |  |  |  |  |
| UNIT II | General equation, angle between two planes, length of perpendicular from a given point to a plane, equations of the plane bisecting the angle between two planes. |  |  |  |  |  |
| UNIT III | Symmetrical form, line through two points , reduction of unsymmetrical form to the symmetrical form - condition for a line to lie on a plane - plane through a line - condition for the two lines to be coplanar (Cartesian form) - equation of the plane containing two lines - To find the shortest distance between two skew lines equation of the shortest Distance in Cartesian. |  |  |  |  |  |
| UNIT IV | Equation of a sphere with given centre and radius - general equation of a sphere - diameter form - and circular section. |  |  |  |  |  |
| UNIT V | Equation of a Cone with its vertex at the origin - equation of a quadratic cone with given vertex and given guiding curve necessary condition for general equation of second degree to represent a cone - circular cone - equation of circular cone with given vertex - axis and semi vertical angle. |  |  |  |  |  |
| Prescribed Text(specify sections clearly) | 1. A Text Book of Analytical Geometry of Three dimensions by T.K.Manickavachagom Pillai and T.NatarajanS. Viswanathan Printers 8r. Publishers) - (2008) |  |  |  |  |  |
| Recommend ed books | 1. Text Book of Analytic Geometry -2D, P. DuraiPandian, EMERALD Publishers (1968) <br> 2.Simplified Course in Solid Geometry(3D) by H.K.Dasse, H.C.Saxena, M.D.Raisinghania - S.Chand\& Company |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | I | Course <br> Name | DSC -2B | Credits | Theory | 4 |
| Semester | II | Course <br> Code | MATH 122 |  | Tutorial | 2 |
| Paper Name | INTEGRAL CALCULUS |  |  |  |  |  |
| UNIT I | Integration of rational algebraic functions - Integration of irrational algebraic functions - Properties of definite integrals |  |  |  |  |  |
| UNIT II | Integration by parts - Bernoulli's formula - Reduction formulae |  |  |  |  |  |
| UNIT III | Evaluation of double integral - Changing of order of integration - Double integral in Polar co-ordinates - Triple integral |  |  |  |  |  |
| UNIT IV | Jacobian - Change of variables in the case of two variable and three variables - Transformation from Cartesian to polar co-ordinate - Transformation from Cartesian to spherical co-ordinates - |  |  |  |  |  |
| UNIT V | Properties - relation between Beta and Gamma functions Recurrence formula |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | ```Calculus Volume II , S.Narayanan and T.K. Manickavasagam Pillai (2008) Unit I : Chapter 1 : 7.3, 7.4, 7.5, 8, 11 Unit II : Chapter 1: 12,13, Unit III: Chapter 5:2.1, 2.2, 3.1, } Unit IV : Chapter 6: 1.1, 1.2, 2.1,2.2,2.3,2.4 Unit v: Chapter 7: 2.1, 2.2, 2.3, 3, 4, 5``` |  |  |  |  |  |
| Recommended books | 1. Integral Calculus, N. P. Bali, Laxmi Publications, Delhi, (1991) <br> 2. Calculus, George B.Thomas, Jr. and Ross L. Finney, 9' Edition, Pearson Education,(2006). |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.inhttp://ocw.mit.eduhttp://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course <br> Name | DSC -1C | Credits | Theory | 4 |
| Semester | III | Course <br> Code | MATH 231 |  | Tutorial | 2 |
| Paper <br> Name | ABSTRACT ALGEBRA |  |  |  |  |  |
| UNIT I | Definition of Group - examples of groups - Some preliminary lemmas - Subgroups. |  |  |  |  |  |
| UNIT II | A counting principle - Normal subgroups and Quotient Groups - Homomorphisms. |  |  |  |  |  |
| UNIT III | Automorphisms - Cayley's theorem - Permutation groups. |  |  |  |  |  |
| UNIT IV | Definition of Ring- examples of a rings - Some special classes of rings - Homomorphisms - Ideals and quotients rings. |  |  |  |  |  |
| UNIT V | More ideals and quotients rings -The field of quotients of an integral domain. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | ```I.N. Herstein, Topics in Algebra (Second Edition),John Wiley& Sons (2003) Unit I : Sections 2.1 to 2.4 Unit II :Sections 2.5 to 2.7(except applications 1 & 2 of 2.7) Unit III:Sections 2.8 to 2.10 Unit IV:Sections 3.1 to 3.3 Unit V : Sections 3.4,3.6``` |  |  |  |  |  |
| Recommended books | 1. A First course in Algebra by J. B. Fraleigh,Addison Wesley. <br> 2. Modern Algebra by M.L. Santiago, (TMG) <br> 3. Modern Algebra by S.Arumugam, Issac A. T, Scitech Publications. |  |  |  |  |  |
| e-Learning Source | $\frac{\text { http://ndl.iitkgp.ac.in }}{\text { http://ocw.mit.edu }}$ <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | DSC - 2C |  | Theory | 4 |
| Semester | III | Course Code | MATH 232 | Credits | Tutorial | 2 |
| Paper Name | REAL ANALYSIS - I |  |  |  |  |  |
| UNIT I | Sets and elements - Operations on sets - Functions - Real valued functions - Equivalence - Countability - Real numbers - Least upper bound - Greatest lower bound. |  |  |  |  |  |
| UNIT II | Definition of sequence and subsequence - Limit of a sequence Convergent sequence - Bounded sequence Monotone sequence Operation on convergent sequence - Limit superior and limit inferior - Cauchy sequence |  |  |  |  |  |
| UNIT III | Convergence and divergence- Series with non - negative terms Alternating series - Conditional convergence and absolute convergence - Tests for absolute convergence - Series whose terms form a non -increasing sequence - Summation by parts. |  |  |  |  |  |
| UNIT IV | Limit of a function on the real line - Metric spaces (Examples 4 and 5 under 4.2 c to be omitted) - Limits in metric spaces. |  |  |  |  |  |
| UNIT V | Functions continuous at a point on the real line Reformulation Functions continuous on a metric space - Open sets and closed sets - Discontinuous functions on $\mathbf{R}$ |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | Methods of Real Analysis, Treatment as in <br> Richard R. Goldberg(1970) <br> Unit 1 : Chapter 1 <br> Unit 2, 3: Chapter 2 and Chapter 3 (up to 3.8) <br> Unit 4 : Chapter 4 <br> Unit 5 : Chapter 5 |  |  |  |  |  |
| Recommend ed books | 1. A First Course in Mathematical Analysis- D somasundaram\& B Choudhyri- Narosa Publishing house New Dehli <br> 2. Real Analysis- Shanti Narayanan |  |  |  |  |  |
| $e$-Learning Source | http://ndl.iitkgp.ac.in http://ocw.mit.edu http://mathforum.org |  |  |  |  |  |


| Degree | B. Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course <br> Name | DSC- 3C | Credits | Theory | 4 |
| Semester | III | Course Code | MATH 233 |  | Tutorial | 2 |
| Paper <br> Name | STATICS |  |  |  |  |  |
| UNIT I | Definition of a Force-Types of Forces: Gravity, Tension, Resistance, Friction-Magnitude and Direction of the Resultant of Forces on a particle - Equilibrium of a Particle. |  |  |  |  |  |
| UNIT II | Equilibrium of a Particle acted on by Three Forces-The Triangle of forces-Necessary and Sufficient conditions for the Equilibrium of a Particle under Three Forces- Lami's Theorem--Necessary and Sufficient conditions for the Equilibrium of a Particle under a System of Forces-Equilibrium of a Particle on a Rough Inclined Plane. |  |  |  |  |  |
| UNIT III | Equivalent Systems of Forces-Resultant of Parallel Forces-Couples-Resultant of Several Coplanar Forces-Moment of the Resultant Force-Varignon's Theorem-Couples in a Plane or in Parallel planes- Resultant of a Couple and a Force. |  |  |  |  |  |
| UNIT IV | Equation of the Line of action of the Resultant-Equilibrium of the Rigid body under three coplanar forces. |  |  |  |  |  |
| UNIT V | Equilibrium of uniform homogeneous string- Sag-Suspension Bridge. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Mechanics, P. Duraipandian, LaxmiDuraipandian and MuthamizhJayapragasam, S. Chand and Company Ltd, New Delhi (1997) Unit I- Chapter 2; Unit II- Chapter 6; Unit III- Chapter 7 ( up to Section 7.9); Unit IV- Chapter 7(Sections 7.10 to 7.12); Unit V: Chapter 11 |  |  |  |  |  |
| Recommended books | 1. Mechanics(Statics and Dynamics) by S.G Venkatachalapathy, Margham Publications, Chennai. <br> 2. Golden Statics by N.T. Bali-Laxmi Publications. |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | SEC - 1 | Credits | Theory | 2 |
| Semester | III | Course Code | MATH 234 |  | Tutorial | 0 |
| Paper Name | VECTOR CALCULUS |  |  |  |  |  |
| UNIT I | Gradient of a scalar function -properties - directional derivatives - Divergence of a vector function - Curl of a vector function - related problems |  |  |  |  |  |
| UNIT II | Vector identities - Line integrals - related problems |  |  |  |  |  |
| UNIT III | Surface integrals - Volume integrals |  |  |  |  |  |
| UNIT IV | Green's theorem - Stokes's theorem - Verification of theorems |  |  |  |  |  |
| UNIT V | Gauss divergence theorem - Verification of theorem |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Engineering Mathematics - II by Dr.M.B.K.Moorthy |  |  |  |  |  |
| Recommended books | Vector Analysis- P.Duraipandian, LaxmiDuraipandian, Emerald Publishers pvt. Ltd. 1990. |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.inhttp://ocw.mit.eduhttp://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMA | ICS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | DSC -1D | Credits | Theory | 4 |
| Semester | IV | Course Code | MATH 241 |  | Tutorial | 2 |
| Paper Name | LINEAR ALGEBRA |  |  |  |  |  |
| UNIT I | Vector spaces - Elementary Concepts - subspaces |  |  |  |  |  |
| UNIT II | Linear independence - Bases - Dual spaces |  |  |  |  |  |
| UNIT III | Inner product spaces |  |  |  |  |  |
| UNIT IV | Algebra of Linear transformations - Characteristic roots. |  |  |  |  |  |
| UNIT V | Matrices : Canonical forms - triangular forms |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Topics in Algebra - I.N Herstein, Wiley Eastern Limited <br> Chapter -4: Sections 4.1-4.4 <br> Chapter -5; Sections 6.1-6.4 |  |  |  |  |  |
| Recommended books | 1. First course in Algebra - John B. Fraleigh, Addison Wesley <br> 2. University Algebra - N. S. Gopalakrishnan - Wiley Eastern Limited <br> 3. Textbook of Algebra - R. Balakrishnan\& N. Ramabadran, Vikas Pub. Co <br> 4. S. Lipschutz - Beginning Linear Algebra, TMG Hill <br> 5. M.L.Santiago - Modern Algebra TMG Hill |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch |  | THEMA | CS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | DSC-2D | Credits | Theory | 4 |
| Semester | IV | Course Code | MATH 242 |  | Tutorial | 2 |
| Paper <br> Name | REAL ANALYSIS II |  |  |  |  |  |
| UNIT I | More about open sets - Connected sets. Bounded sets and totally bounded sets - Complete metric spaces. |  |  |  |  |  |
| UNIT II | Compact metric spaces Continuous functions on compact metric Spaces - Continuity of the inverse function - Uniform continuity. |  |  |  |  |  |
| UNIT III | Sets of measure zero - Definition of the Riemann integral - Existence of the Riemann integral - Properties of the Riemann integral |  |  |  |  |  |
| UNIT IV | Derivatives - Rolle's theorem - The Law of the Mean Fundamental theorem of Calculus - Improper integrals. |  |  |  |  |  |
| UNIT V | Hyperbolic function - The exponential function - The logarithmic function - Definition of $\mathrm{x}^{\mathrm{a}}$ - The trigonometric function - Taylor Theorem -L'Hopital's rule. |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | Methods of Real Analysis, Treatment as in Richard R. Goldberg, <br> (1970) <br> Unit 1: 6.1 to 6.4 <br> Unit 2: 6.5 to 6.8 <br> Unit 3: 7.1 to 7.4 <br> Unit 4: 7.5 to 7.10 <br> Unit 5: 8.1 to 8.7 |  |  |  |  |  |
| Recommend ed books | 1. First Course in Mathematical Analysis by Dr.Somasundaram\& B Choudhyri- Narosa Publishing house New Dehli <br> 2. Real Analysis- byShanti Narayanan |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc. | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | DSC -3D | Credits | Theory | 4 |
| Semester | IV | Course Code | MATH 243 |  | Tutorial | 2 |
| Paper Name | DYNAMICS |  |  |  |  |  |
| UNIT I | Velocity- Relative Velocity- Acceleration- Angular Velocity- Relative Angular Velocity- Rectilinear Motion- Work, Power and Energy. |  |  |  |  |  |
| UNIT II | Central Forces and Central Orbit- Equations of a Central Orbit- Law of Force and Speed for a given Orbit- Determination of the orbit when the law of force is given- Kepler's laws of Planetary motion. |  |  |  |  |  |
| UNIT III | Motion of a Projectile- Nature of a Trajectory- Results Pertaining to the motion of a Projectile- Maximum Horizontal Range- Trajectories with a given speed of projection and a given horizontal range- Speed of a ProjectileRange on an Inclined plane- Maximum range on the inclined plane- Envelope of the trajectories. |  |  |  |  |  |
| UNIT IV | Definition of Simple Harmonic Motion- Composition of two Simple Harmonic Motions of the same period. Moment of Inertia-Theorems of moment of Inertia -Theorem of Perpendicular axes- Theorem of parallel axes. |  |  |  |  |  |
| UNIT V | Two Dimensional Motion of a Rigid Body- Motion of a Rigid Body rotating about a fixed axis- Compound Pendulum- Reaction of the axis on a rigid Body revolving about a fixed axis- Equations of Motion for a two dimensional Motion- Motion of a uniform disk rolling down an inclined plane. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Mechanics, P. Duraipandian, LaxmiDuraipandian and MuthamizhJayapragasam, S. Chand and Company Ltd, New Delhi (1997) Unit I-Chapter 1 and 4;Unit II- Chapter 15; ;Unit III-- Chapter 13(up to Section 13.9); <br> Unit IV-Chapter 5(Section 5.1 and 5.3 only) and Chapter 16; Unit V-Chapter 17 |  |  |  |  |  |
| Recommend ed books | 1. Mechanics(Statics and Dynamics) by S.G Venkatachalapathy, Margham Publications, Chennai. <br> 2. Golden Statics by N.T. Bali-Laxmi Publications. |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \text { http://ndl.iitkgp.ac.in } \\ & \begin{array}{l} \text { http://ocw.mit.edu } \\ \text { http://mathforum.org } \end{array} \\ & \hline \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | II | Course Name | SEC - 2 | Credits | Theory | 2 |
| Semester | IV | Course Code | MATH 244 |  | Tutorial | 0 |
| Paper Name | LOGIC AND LATTICES |  |  |  |  |  |
| UNIT I | Connectives - negation - conjunction - disjunction - statement formulas and truth tables - Conditional and bi conditional - well formed formulas tautologies - equivalence of formulas - duality law - tautological implications |  |  |  |  |  |
| UNIT II | Normal forms - disjunctive normal forms - conjunctive normal forms principal disjunctive normal forms - principal conjunctive normal forms |  |  |  |  |  |
| UNIT III | Partial ordering - lexicographic ordering - Partially ordered set - Hasse diagram - least member - greatest member - minimal member - maximal member - least upper bound - greatest lower bound |  |  |  |  |  |
| UNIT IV | Lattice - examples - properties of lattices - lattices as algebraic systems sub lattices - direct product - homomorphism - order preserving Special lattices - complete lattice - bounded lattice - complement complemented lattice - distributive lattice |  |  |  |  |  |
| UNIT V | Boolean algebra - - properties - examples - sub algebra - direct product - homomorphism - Boolean functions - karnaugh maps for one variable two variables - three variables |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Discrete Mathematical structures with applications to computer science by J.P.Tremblay and R.Manohar <br> Unit 1: 1.1, 1.2.1 to 1.2.4, 1.2.6 to 1.2.12 <br> Unit 2: 1.3.1 to 1.3.4 <br> Unit 3: 2.3.8 to 2.3.9 <br> Unit 4: 4.1.1 to 4.1.5 <br> Unit 5: 4.2.1 to 4.2.2, 4.3.1 to 4.3.2, 4.4.1 to 4.4.2 |  |  |  |  |  |
| Recommended books | 1. Lattice theory by Garrett Birkhoff <br> 2. Discret Mathematics - M.K. Venkatraman, National Publishing Co, Chennai |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \frac{\text { http://ndl.ititkgp.ac.in }}{\text { http://ocw.mit.edu }} \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | III | Course Name | SEC - 3 | Credits | Theory | 0 |
| Semester | V | Course Code | MATH - 351 |  | Practical | 2 |
| Paper <br> Name | PROGRAMMING LAB IN C - PRACTICAL |  |  |  |  |  |

## LIST OF PRACTICALS

1. Write a program to Convert the temperature in Celsius to Fahrenheit and vice versa
2. Write a program to find the Simple interest and Compound interest
3. Write program to solve Quadratic equation
4. Write a program to generate Prime numbers
5. Write a program to generate Fibonacci numbers
6. Write a program to find the Biggest and Smallest number from a set of given $\mathbf{n}$ numbers
7. Write a program to check a given number is a Palindrome or not
8. Write a Program to arrange the numbers in ascending / descending order
9. Write a program to find the Factorial of a natural number
10. Write a program to find the nCr and nPr using functions
11. Write a progam to find the Factorial of a natural number using recursion
12. Write a program to find the Sum of two matrices
13. Write a program to find the Product of two matrices
14. Write a program to evaluate $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots \ldots$.
15. Write a program to evaluate $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots$.

| e-Learning <br> Source | http://ndl.iitkgp.ac.in |
| :--- | :--- |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE | Credits | Theory | 4 |
| Semester | V | Course Code | MATH 353 |  | Tutorial | 1 |
| Paper <br> Name | COMPLEX ANALYSIS - I |  |  |  |  |  |
| UNIT I | Complex numbers - Definitions - Algebraic properties Cartesian co-ordinates - Triangular inequality - Polar Form Powers and roots -Region in the complex plane . |  |  |  |  |  |
| UNIT II | Analytic functions - Functions of a complex variable - Mapping Limit - Theorems on limits - Continuity - Derivatives Differentiation formula - Cauchy Riemann equations - Sufficient conditions. |  |  |  |  |  |
| UNIT III | Cauchy Riemann equations in polar form - Analytic functions Harmonic functions. |  |  |  |  |  |
| UNIT IV | Elementary functions - Exponential function - Trigonometric functions and their--properties - Hyperbolic functions Logarithmic function - Branches - properties of logarithms Complex exponents - Inverse trigonometric \& hyperbolic functions. |  |  |  |  |  |
| UNIT V | Mapping by elementary functions - The linear function $1 / z$ Linear fractional transformation - The function $w=\exp (z), W=$ $\sin \mathrm{z}, \mathrm{W}=\operatorname{Cos} \mathrm{z}, \mathrm{z}^{1 / 2}$ - Successive transformation $\mathrm{W}=\mathrm{z}+1 / \mathrm{z}$. |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | Complex Variables and Applications, James Ward Brow Churchill, McGraw - Hill, International Edition (2009) <br> UNIT I - chapter 1 <br> UNIT II - chapter 2 <br> UNIT III - chapter 2 <br> UNIT IV - chapter 3 <br> UNIT V- chapter 4 |  |  |  |  |  |
| Recommend ed books | 1. Functions of a Complex variable by B. S. Tyagi-KedarNath Ram NathPublishers(P) Ltd. <br> 2. Complex Analysis by P. Duraipandian and KayalalPachaiappa S.Chand\& Co. |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE |  | Theory | 4 |
| Semester | V | Course Code | MATH 353 | Credits | Tutorial | 1 |
| Paper Name | OPERATIONS RESEARCH - I |  |  |  |  |  |
| UNIT I | Mathematical formulation of LPP - Graphical Solution of LPP - Definition of LPP - Canonical and Standard forms of LPP Ordinary Simplex Method to solve LPP (Method and problems only) - Uses of Artificial variables Method (Big - M Method) Two Phase Method |  |  |  |  |  |
| UNIT II | Duality in LPP - Conversion of Primal to Dual - Duality and Simplex Method (Method and problems only) - Dual Simplex Method |  |  |  |  |  |
| UNIT III | General Transportation Problems - Finding IBFS for Transportation Problems - North-West corner Method - Least Cost Method - Vogel's approximation Method - Test for Optimality - Degeneracy in Transportation Problems - MODI Method - Unbalanced Transportation Problems |  |  |  |  |  |
| UNIT IV | Mathematical formulation of Assignment Problems Assignment Method - Travelling Salesman Problems |  |  |  |  |  |
| UNIT V | Two person zero sum game - MAXIMIN - MINIMAX Principle - Saddle Point - Games without Saddle Point Graphical solutions of $2 \times n$ and $m \times 2$ games - Dominance Property - General solution of $\quad \mathbf{m} \mathbf{x}$ games by LPP |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Operations Research by KantiSwarup, P.K.Gupta and Man Mohan (2006) <br> Unit I <br> Chapter 2: Sections 2.1-2.3, Chapter 3: Sections 3.1-3.5 <br> Chapter 4: Sections 4.1-4.4 <br> Unit 2: <br> Chapter 5 : Sections 5.1-5.7, 5.9 <br> Unit3: <br> Chapter 10: Sections 10.1-10.14 <br> Unit 4: <br> Chapter 11: Sections 11.1-11.6 <br> Unit 5: <br> Chapter 17: Sections 17.1-17.10 |  |  |  |  |  |
| Recommended books | Resource Management Techniques(Operations Research) by V. Sundaresan, K. S. Ganapathy Subramanian, K. Ganesan -A. R. Publications |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \frac{\text { http://ndl.iitkgp.ac.in }}{\text { http://ocw.mit.edu }} \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE |  | Theor | 4 |
| Semester | V | Course Code | MATH 354 | Credits | Tutorial | 1 |
| Paper <br> Name | ORDINARY DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS |  |  |  |  |  |
| UNIT I | Exact differential equations - Equations of the First, but of higher degree - Equations solvable for dy/dx, solvable for $\mathbf{y}$, solvable for x , Clairaut's form |  |  |  |  |  |
| UNIT II | Linear Differential equations with constant co-efficients - Linear differential equations with variable coefficients. |  |  |  |  |  |
| UNIT III | Method of Variation of parameters - Simultaneous Linear differential equations with constant coefficients |  |  |  |  |  |
| UNIT IV | Laplace transform - basic properties - transforms of derivatives and integrals functions - derivatives and integrals of transforms - transforms of step function - and impulse functions transforms of periodic functions |  |  |  |  |  |
| UNIT V | Inverse Laplace transforms - convolution theorem - initial and final value theorem - solution of linear ODE of second order with constant coefficients using Laplace transform. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | 1. Calculus III S.Narayanan and T.K. Manicavachagom Pillay, for Units I,II and III <br> 2. Engineering Mathematics - II by Dr. M.B.K. Moorthy for Unit IV and Unit V |  |  |  |  |  |
| Recommended books | 1. Introductory course in Differential equations, D.A.Murray, Orient Longman (1967) <br> 2. Advance Engineering Mathematics, Erwin Kreyzsig, Wiley India Edition (2010) <br> 3. Engineering Mathematics, M.K.Venkataraman, National Publications, Chennai (2009) |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMA | TICS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE | Credits | Theory | 4 |
| Semester | V | Course Code | MATH 355 |  | Tutorial | 1 |
| Paper Name | GRAPH THEORY |  |  |  |  |  |
| UNIT I | Simple graphs - Graph isomorphism - The incidence and Adjacency Matrices -Subgraph - Vertex degree - Paths and connections - Cycles - Shortest path - Dijkstra's algorithm. |  |  |  |  |  |
| UNIT II | Trees - Cut edge and Bonds - Cut vertices - Cayley's formula -Kruskal's algorithm. |  |  |  |  |  |
| UNIT III | Connectivity - Blocks - Applications. |  |  |  |  |  |
| UNIT IV | Euler Tour - Hamiltonian cycles - applications. |  |  |  |  |  |
| UNIT V | Edge colouring - chromatic number - Vizing's theorem. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Graph theory with appliations by J.A.Bonday and U.S.R.Murty <br> Unit I : Chapter 1 <br> Unit 2 : Chapter 2 <br> Unit 3 : Chapter 3 <br> Unit 4: Chapter 4 <br> Unit 5: Chapter 6 |  |  |  |  |  |
| Recommended books | Graph theory with applications by NarasinghDeo Basic graph theory by Saidur Rahman Introduction to Graph theory by Douglas |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \begin{array}{l} \text { http://ndl.iitkgp.ac.in } \\ \text { http://ocw.mit.edu } \\ \text { http://mathforum.org } \end{array} \\ & \hline \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course <br> Name | DSE | Credits | Theory | 4 |
| Semester | V | Course <br> Code | MATH 356 |  | Tutorial | 1 |
| Paper Name | MATHEMATICAL STATISTICS - I |  |  |  |  |  |
| UNIT I | Random variables - Distribution function - Discrete random variable Continuous random variable - Continuous distribution function - Two dimensional random variables - Joint probability function Mathematical expectation and variance. |  |  |  |  |  |
| UNIT II | Moment generating function - Properties of MGF - Cumulants Properties of Cumulants - Characteristic function - Properties of characteristic function - Tchebychev's inequality. |  |  |  |  |  |
| UNIT III | Binomial distribution - Moments of binomial distribution - Recurrence relation for the moments of binomial distribution - MGF of Binomial distribution - Characteristic function of Binomial distribution - Fitting a binomial distribution. |  |  |  |  |  |
| UNIT IV | Poisson distribution - Moments of the Poisson distribution Recurrence relation for moments of Poisson distribution - Moment generating function of Poisson distribution - Characteristic function of Poisson distribution - Fitting a Poisson distribution. |  |  |  |  |  |
| UNIT V | Normal distribution - Properties of normal distribution - Mode, Median, MGF, Moments Points of inflexion, Median deviation about mean, Area property of Normal distribution - Problems using area Properties. |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | Fundamentals of Mathematical Statistics by S.C.Gupta, V.K.Kapoor, Sultan Chand and Sons, $11^{\text {th }}$ edition <br> Unit I : 5.1 to 5.4, 6.1 to 6.9 <br> Unit II : 6.10 to 6.13 <br> Unit III : 7.2 <br> Unit IV : 7.3 <br> Unit V : 8.2.1 to 8.2.11 |  |  |  |  |  |
| Recommended books | 1. Statistical methods by S.P.Gupta - Sultan Chand. <br> 2. Statistics(Theory and Practice) by R.S.N.Pillai\& V. Bagavathy S.Chand\& Co. |  |  |  |  |  |
| e-Learning Source | $\frac{\text { http://ndl.iitkgp.ac.in }}{\text { http://ocw.mit.edu }}$http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | GE - 1 | Credits | Theory | 3 |
| Semester | V | Course Code | MATH 357 |  | Tutorial | 0 |
| Paper Name | PROGRAMMING IN C |  |  |  |  |  |
| UNIT I | Main Function - Basic Structure of C Programs - Executing A 'C' Program - Character set - c Tokens - keywords and identifiers Constants - Variables - Data types - Declarations of variables - User defined type declarations - Assignment statement - Reading data from Keyboard - Defining symbolic constants - Types of Operators Arithmetic Expressions - Type conversion in expressions - Mathematical functions. |  |  |  |  |  |
| UNIT II | Managing Input and Output operations - Reading a character - Writing a Character - Formatted input - Formatted output - Decision Making with IF statement - Simple IF statement - IF ...ELSE statement - Nesting of IF ... ELSE statement - ELSE IF Ladder. |  |  |  |  |  |
| UNIT III | Switch Statement - Conditional Operator - GOTO statement Decision making with looping - WHILE statement - DO Statement FOR statement - Nesting of For Loops - Jumps in Loop - Jumping out of a loop - Arrays - One Dimensional array - Two dimensional arrays Multi dimensional arrays. |  |  |  |  |  |
| UNIT IV | Character arrays and strings - Declaration of Strings - Reading Strings Writing strings - Comparison of Strings - String handling functions. |  |  |  |  |  |
| UNIT V | User defined functions - Elements of user defined functions - Definition of functions - Return values and their types - Function call - Function declaration - Category of functions - Nesting functions- Recursion Passing array to functions - Storage class variable Auto, Extern, static and Register. |  |  |  |  |  |
| Prescribed Text(specify sections clearly) | Progr <br> Unit <br> Unit <br> Unit <br> Unit <br> Com | ing In C by E.B $\begin{aligned} & 1.2,1.8-1.10,2 \\ & 4.5,5.1-5.9 \\ & -6.5,7.1-7.7,8 . \\ & 1-9.17,9.19 \end{aligned}$ | $\begin{aligned} & \text { agurusamy , } 4^{\text {th }} \\ & -2.12,3.1-3.14, \\ & -8.9 \end{aligned}$ | ition (200) 16 |  |  |
| Recommended books | Computer Programming in C by Dr.V. Rajaram, Prentice Hall India Pvt. Ltd |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \frac{\text { http://ndl.iitkgp.ac.in }}{\text { http://ocw.mit.edu }} \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | III | Course Name | SEC - 4 | Credits | Theory | $\mathbf{2}$ |
| Semester | VI | Course Code | MATH 361 |  | Tutorial | 0 |
| Paper <br> Name | PROGRAMMING LAB IN NUMERICAL METHODS <br> USING C |  |  |  |  |  |

## LIST OF PRACTICALS

1. Write a program to solve algebraic and transcendental equations by Bisection method
2. Write a program to solve algebraic equation and transcendental by Newton-Raphson method
3. Write a program to solve simultaneous linear algebraic equations by Gauss jordan method
4. Write a program to find the inverse of a matrix of order $n$
5. Write a program to find the determinant of a matrix of order $n$
6. Write a program to solve simultaneous linear algebraic equations by Gauss Seidal
7. Write a program to evaluate definite integral by Trapezoidal rule
8. Write a program to evaluate definite integral by Simpson's $1 / 3$ rule
9. Write a program to solve first order ODE by Euler's method
10. Write a program to solve the first order ODE by Runge Kutta method

| e-Learning <br> Source | http://ndl.iitkgp.ac.in <br> $\frac{\text { http://ocw.mit.edu }}{\text { http://mathforum.org }}$ |
| :--- | :--- |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE | Credits | Theory | 4 |
| Semester | VI | Course Code | MATH 362 |  | Tutorial | 1 |
| Paper Name | COMPLEX ANALYSIS- II |  |  |  |  |  |
| UNIT I | Contour integrals- - Examples - The Cauchy Goursat's theorem - A preliminary lemma - Proof of Cauchy Goursat's theorem - Simply and multiple connected domains. |  |  |  |  |  |
| UNIT II | The Cauchy integral formula -Derivatives of analytic functions Morera's theorem - Maximum moduli of functions-Liouville's theorem- The fundamental theorem of algebra. |  |  |  |  |  |
| UNIT III | Convergence of sequences and series - Taylor series Observations and examples - Laurent Series (statement only). |  |  |  |  |  |
| UNIT IV | Singularities - Definitions and examples - Residues - The residue theorem - The principal part of a function - Residues and poles - zeros and poles of order $m$. |  |  |  |  |  |
| UNIT V | Type 1: $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} d x$ <br> Type 2: $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin a x \mathbf{d x}$ or $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos a x \mathbf{d x}$ <br> Type 3 : $\int_{0}^{2 \pi} F(\sin \theta, \cos \theta) d \theta$ <br> where $\mathbf{p}(\mathbf{x})$ and $\mathbf{q}(\mathbf{x})$ are real polynomials with no factor in common and $q(x)$ has no real zeros. |  |  |  |  |  |
| Prescribed <br> Text(specify sections clearly) | Complex Variables and Applications, James Ward Brown and Ruel V Churchill, McGraw - Hill, International Edition (1990) <br> Unit I : Chapter 4:Section 34-38 <br> Unit II: Chapter 4 Section 39-43 <br> Unit III:Chapter 5:Section 44-48 <br> Unit IV:Chapter 6:Section 53-57 <br> Unit V:Chapter 6:Section 58-60 |  |  |  |  |  |
| Recommended books | 1. Functions of a Complex variable by B. S. Tyagi-KedarNath Ram NathPublishers $(\boldsymbol{P})$ Ltd. <br> 2. Complex Analysis by P. Duraipandian and KayalalPachaiappa S.Chand\& Co. |  |  |  |  |  |
| $e$-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | M |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE | Credits | Theory | 4 |
| Semester | VI | Course Code | MATH 363 |  | Tutorial | 1 |
| Paper Name | OPERATIONS RESEARCH - II |  |  |  |  |  |
| UNIT I | Network and Basic Components - Logical sequence - Rules for Network Construction - Critical Path Analysis - Probability Considerations in PERT - Difference between PERT and CPM |  |  |  |  |  |
| UNIT II | Deterministic inventory Models <br> 1. Uniform rate of demand infinite rate of production, no shortage <br> 2. Uniform rate of demand, Finite rate of replenishment, no shortages <br> 3. Uniform rate of demand, instantaneous Production with shortages <br> 4. Uniform rate of demand, instantaneous Production with shortages and fixed time |  |  |  |  |  |
| UNIT III | Queueing Systems - Elements of Queueing systems - Characteristics of queueing Systems - Distribution of Arrivals - Distribution of Inter arrival time - Classification of queueing Models - Deriving Steady state Probabilities for M/M/1 queueing systems - System Measures Little formula - Deriving Steady state Probabilities for M/M/1 queueing systems with finite capacity - System Measures - Related Problems. |  |  |  |  |  |
| UNIT IV | Multi server queueing Model - Deriving Steady state Probabilities for M/M/c queueing system - System Measures - Deriving Steady state Probabilities for M/M/c queueing system with finite capacity - System Measures - Related Problems. |  |  |  |  |  |
| UNIT V | Methodology of Simulation - Event type simulation - Generation of random numbers - Monte - Carlo Simulation on Inventory Problems - simulation of Queueing Systems. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Operations Research by KantiSwarup , P.K.Gupta and Man Mohan (2006) <br> Unit 1: Chapter 21: Sections 21.1-21.7 <br> Unit 2: Chapter 19 : Sections 19.1-19.7 <br> Unit3: Chapter 20: Sections 20.1-20.8 <br> Unit 4: Chapter 20: Sections 20.8 <br> Unit 5: Chapter 23: Sections 23.1-23.9 |  |  |  |  |  |
| Recommended books | Resource Management Techniques(Operations Research) by V. Sundaresan, K. S. Ganapathy Subramanian, K. Ganesan -A. R. Publications |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \text { http://ndl.iitkgp.ac.in } \\ & \text { http://ocw.mit.edu } \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course <br> Name | DSC | Credits | Theory | 4 |
| Semester | VI | Course Code | MATH 364 |  | Tutorial | 1 |
| Paper <br> Name | PARTIAL DIFFERENTIAL EQUATIONS |  |  |  |  |  |
| UNIT I | Formation of Partial differential equations - by elimination of arbitrary constants - by elimination of arbitrary functions Singular integral - General integral. |  |  |  |  |  |
| UNIT II | Standard types of first order equations - Standard 1,2,3,4 Equations reducible to standard forms. |  |  |  |  |  |
| UNIT III | Lagrange's equations - Charpit's Method. |  |  |  |  |  |
| UNIT IV | Linear Partial Differential equation of Second and higher order with constant coefficients. |  |  |  |  |  |
| UNIT V | One dimensional wave equations, heat equation, Laplace equation - Simple problems. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | S.Narayanan and T.K. ManicavachagomPillay, Calculus III Unit 1, 2, 3 : Chapter 4 <br> Transforms and Partial differential equations by Dr. A. Singaravelu <br> Unit 4 : Chapter 3 <br> Unit 5 : Chapter 4 |  |  |  |  |  |
| Recommended books | 1. Introductory course in Differential equations, D.A.Murray, Orient Longman (1967) <br> 2. Advance Engineering Mathematics, Erwin Kreyzsig, Wiley India Edition (2010) <br> 3. Engineering Mathematics, M.K.Venkataraman, National Publications, Chennai (2009) |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \text { http://ndl.iitkgp.ac.in } \\ & \text { http://ocw.mit.edu } \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEMATICS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSE | Credits | Theory | 4 |
| Semester | VI | Course Code | MATH 365 |  | Tutorial | 1 |
| Paper <br> Name | FOURIER SERIES AND FOURIER TRANSFORM |  |  |  |  |  |
| UNIT I | Dirichlet's condition - General Fourier series Odd and Even functions - Change of interval - Half range Sine and Cosine series expansions |  |  |  |  |  |
| UNIT II | Complex form of Fourier series - Parseval's identity Harmonic Analysis |  |  |  |  |  |
| UNIT III | Definition - Properties of Fourier Transform - Modulation Theorem - Fourier transform Integrals |  |  |  |  |  |
| UNIT IV | Relation between Fourier and Laplace Transform Convolution Theorem for a Fourier Transform, Parseval's identity |  |  |  |  |  |
| UNIT V | Fourier sine Transform - Fourier Cosine Transform - Finite Fourier Transform - Finite Fourier sine and cosine transform of the derivatives of a function |  |  |  |  |  |
| Prescribed Text(specify sections clearly) | Engineering Mathematics III-B, Dr.M.K.Venkataraman Unit 1,2 : Chapter 1 Unit 3,4,5 : Chapter 4 |  |  |  |  |  |
| Recommended books | Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publications, New Delhi(40 ${ }^{\text {th }}$ Edition). |  |  |  |  |  |
| $e$-Learning Source | http://ndl.iitkgp.ac.in <br> http://ocw.mit.edu <br> http://mathforum.org |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHEM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | DSC | Credits | Theory | 4 |
| Semester | VI | Course Code | MA |  | Tutorial | 1 |
| Paper Name | MATHEMATICAL STATISTICS - II |  |  |  |  |  |
| UNIT I | Correlation - Properties - Rank Correlation - Bivariate correlation |  |  |  |  |  |
| UNIT II | Regression - Properties - Regression equations |  |  |  |  |  |
| UNIT III | Sampling - Types of sampling - Parameter and statistics - Test of significance - Null hypothesis - Alternate hypothesis Procedures in testing of hypothesis - errors in sampling critical region - level of significance |  |  |  |  |  |
| UNIT IV | Test of significance of large sampling - Test of significance of single mean - Test of significance of difference between two means - test of significance of proportion - test of significance of difference between two proportions - test of significance of difference between two standard deviation |  |  |  |  |  |
| UNIT V | Chi square test (definition) - chi square test for test of goodness of fit - independence of attributes - student's $t$ - distribution (definition) - $\mathbf{t}$-test for single mean - $\mathbf{t}$ - test for difference between two means - $\mathbf{t}$-test for dependent sample - $\mathbf{t}$-test for co-efficient of correlation |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Fundamentals of Mathematical Statistics by S.C.Gupta, V.K.Kapoor, Sultan Chand and Sons, $11^{\text {th }}$ edition <br> Unit I : 10.1 to 10.6 <br> Unit II : 10.7 <br> Unit III : 12.1 to 12.7 <br> Unit IV : 12.8-12.15 <br> Unit V : 13.1, 13.7, 14.1, 14.2 |  |  |  |  |  |
| Recommended books | 1. Statistical methods by S.P.Gupta - Sultan Chand. <br> 2. Statistics(Theory and Practice) by R.S.N.Pillai\& V. Bagavathy S.Chand\& Co. |  |  |  |  |  |
| e-Learning Source | $\begin{aligned} & \hline \text { http://ndl.iitkgp.ac.in } \\ & \text { http://ocw.mit.edu } \\ & \text { http://mathforum.org } \end{aligned}$ |  |  |  |  |  |


| Degree | B.Sc | Branch | MATHE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | III | Course Name | GE - 2 | Credits | Theory |  |
| Semester | VI | Course Code | MATH 367 |  | Tutorial |  |
| Paper Name | NUMERICAL METHODS USING C |  |  |  |  |  |
| UNIT I | Numerical solution of algebraic and transcendental equations - Bolzano's bisection method - Successive approximation method - Regula falsi method - NewtonRaphson method. |  |  |  |  |  |
| UNIT II | Numerical solution of simultaneous linear algebraic equations - Gauss elimination method - Gauss Jordan elimination method - Gauss Seidel iteration method. |  |  |  |  |  |
| UNIT III | Finite difference operator - Interpolation - Newton-Gregory forward and backward interpolation - Newton's divided difference formula - Lagrange's interpolation formula for uneven intervals - Gauss interpolation formula - Numerical differentiation - Numerical Integration - Trapezoidal rule Simpson's $1 / 3^{\text {rd }}$ rule. |  |  |  |  |  |
| UNIT IV | Numerical solutions of Ordinary differential equations of first and second order - Simultaneous equations - Taylor series method - Picard's method. |  |  |  |  |  |
| UNIT V | Euler's method - Improved Euler's Method - Modified Euler's Method - Runge-Kutta method of second and fourth order - Milne's predictor corrector method. |  |  |  |  |  |
| Prescribed <br> Text(specify <br> sections <br> clearly) | Numerical Method in Science and Engineering, M.K.Venkataraman, National Publication Co, Chennai(2001) <br> Unit 1: Chapter 3 and 4 <br> Unit 2: Chapter 5 <br> Unit 3: Chapter 6 and 9 <br> Unit 4: Chapter 11 (Relevant portions) <br> Unit 5: Chapter 11 (Relevant portions) |  |  |  |  |  |
| Recommended books | Computer oriented Numerical Methods by V. Rajaram-PHI(P) Ltd. |  |  |  |  |  |
| e-Learning Source | http://ndl.iitkgp.ac.in http://ocw.mit.edu http://mathforum.org |  |  |  |  |  |

## QUESTION PAPER PATTERN

Total Mark :75

Time :3 Hours

| Section A | Section B | Section C |
| :---: | :---: | :---: |
| Ten questions $10 * 2=20$ <br> Two questions from each units | Five Questions $5 * 5=25$ <br> Internal choice one set of questions from each units | Three Questions $3 * 10=30$ <br> 3 out of 5 questions (one question from each unit) |


| Section | No. of <br> Questions | Allocation of <br> questions | Choice <br> type | Mark <br> per <br> Question | Total Marks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | 10 | Two from <br> each unit | No choice | 2 | $10 \times 2=20$ |
| B | 5 | One setfrom <br> each unit | Either or <br> type | 5 | $5 \times 5=25$ |
| C | 5 | One from <br> each unit | 3 out of 5 | 10 | $3 \times 10=30$ |

